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ABSTRACT 

Application of Constrained-Layer Damping 
to a Precision Kinematic Coupling 

Steven A. Jensen and Layton C. Hale 

Lawrence Livermore National Laboratory 
7000 East Avenue 

Livermore, CA. 94550 

This paper addresses the need to support a very precise 
optical instrument while causing essentially no influence to 
its natural shape. Such influences could come from a 
number of sources, such as manufacturing tolerances, 
temperature changes, over-constrained structural 
members, or ground motion. Kinematic couplings have 
long been used for purposes of repeatable location and 
minimal influence to the supported object, however these 
couplings typically offer very little damping. This paper 
presents a kinematic coupling that utilizes constrained- 
layer damping techniques to damp out the first three 
modes of vibration of a precision optical instrument. Finite 
element analysis was used to aid in the design and tuning 
of the dampers for the kinematic coupling. Experimental 
tests were conducted and confirmed the effectiveness of 
the dampers. The quality factor (Q), which measure the 
amplification at resonance, dropped from 33.3 to 5.9 on 
the first mode, from 156.3 to 7.1 on the second mode, and 
from 147.1 to 18.5 on the third mode. These dampers 
help to ensure that the stringent vibration requirements 
necessary to produce high quality optical images are met. 

NOMENCLATURE 
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translational degrees of freedom / coordinates 
relative visco-elastic stiffness (non-dimensional) 
stiffness 
loss factor 
quality factor 
damping factor 
surface area 
Young’s modulus 
shear modulus 
Poisson’s ratio 
ratio between constraining-layer stiffness and 
structural stiffness 
thickness 
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BACKGROUND 

Extreme ultraviolet lithography (EUVL) is one of the 
leading candidates for patterning semiconductor devices 
during the next decade. The projection optics system for 
EUVL requires precise and repeatable alignment of the 
reflective optics within the structural housing. It is critical 
that the housing be isolated from variable loads that could 
change the optical alignment. Such loads could arise from 
being mounted to other structures in an over-constrained 
manner. This leads to uncertainty in predicted forces and 
deformations and ultimately results in imprecision. In 
addition to concern over quasi-static loads on the housing, 
the dynamic response of the projection optics system is 
also very demanding. The mount must be stiff to achieve 
sufficiently high resonant frequencies (> 100 Hz) and, if 
possible, provide moderate damping (> 5% critical) to 
reduce amplification at resonance. Together, these traits 
reduce the vibration amplitude of the optics caused by 
random ground motion transmitted through the vibration 
isolators. 

Kinematic couplings (e.g., a three-vee coupling) are 
commonly used for the purposes of repeatable location 
and minimal influence to the supported object; however, 
typical kinematic couplings provide very little damping. 
This paper presents a unique kinematic coupling that 
utilizes constrained-layer damping techniques to damp out 
the first three modes of vibration on the EUVL projection 
optics system. 

FLEXURE MECHANISM DESIGN 

Figure la schematically shows the damped flexure 
mechanism used to support the EUVL projection optics 
system. This flexure mechanism will be referred to as a 
“bipod flexure”, and a total of three are required for rigid 
support purposes (see Figure Ib). The ball-cone interface 
is used to provide connect-disconnect repeatability and 
allows three rotational degrees of freedom about the ball 
center. A pair of blade flexures (one in each leg of the 
bipod flexure) provides an additional hinge axis that in 
combination with the ball-cone joint releases one 
translational constraint. The remaining two translational 



constraints are equivalent to those provided by a ball-vee 
interface typical of a three-vee kinematic coupling. The 
advantages of the ball-cone interface over the ball-vee 
interface are lower contact stress, higher stiffness and 
lower friction due to its small radius compared to the 
separation between the ball and hinge axis. 

To isolated structure 

Consbaining layer 

Viscoelastic laver 

To mounting frame 

Figure la: Schematic of bipod flexure. 

/ \ 

W 

Damped iiexures provide flexural 
freedom in the directions indicated 

Figure 7b: Top view of support configuration, 
using 3 bipod flexures. 

The constrained-layer damping treatment was applied in 
parallel (structurally) with the blade flexure with the intent 
to dampen vibration traveling axially along the length of 
each bipod leg (see Figure 2). This was done because the 
majority of vibration energy travels along the stiffest path 
and the support flexures were designed to be stiffest in the 
axial direction. 

For convenience in describing how the dampers were 
constructed, each bipod leg will be divided into two 
sections, namely Section A and Section B (see Figure 2a). 
Section A refers to that portion of the bipod leg between 
the mounting holes and the base of the main flexure 
blade. Section B refers to that portion of the bipod leg 
from the base of the main flexure blade down towards the 
ball. 

The bipod flexure was designed to have a main load- 
carrying flexure blade and two side webs on each leg. 
The webs and main flexure blade are cut from bulk 
material using an electro-discharge machining (EDM) 
process so that the entire part is monolithic. The webs, by 
themselves, provide no structural stiffness since they do 
not connect to Section A. These webs protect the main 
flexure blade from over-flexing and provide an area on 
which the visco-elastic material can be applied. The 
constraining layers are thin plates, having the same 
thickness as the webs, and are fastened to Section A with 
epoxy and screws. The visco-elastic material, which has 
adhesive on both sides, then binds the constraining layers 
to the side webs. 

section 
dividing 

----- line \ 

fasteners 

main 

(a)  (b)  

Figure 2: Side view of bipod leg, a )  without damping 
treatment and b) with damping treatment. 

CONSTRAINED-LAYER DAMPING 

The damping mechanism in constrained-layer damping 
relies on the selected visco-elastic material (VEM) and its 
corresponding loss factor. The loss factor (q = l /Q) is a 
direct measure of damping and is approximately twice the 
damping ratio (6 )  in a second order system. There are 
many different types of VEM, each possessing different 
loss factors over varying ranges of frequency and 
temperature. The VEM is applied between the structure to 
be damped and a stiffener, or constraining-layer, so that 
relative motion between them shears the VEM and 
dissipates energy. The application of VEM to a structure 
is most effective when it is impedance matched to the 
system, which requires analysis and/or measurement to 
achieve optimal performance. Without an analytical 
approach to damper design, it is easy to miss the optimal 
damping by a factor of three or more. 

When modeling the dynamics of a structure, it is 
convenient to represent the individual modes using mass- 
spring-damper systems. When the damping element is 
visco-elastic rather than strictly viscous, the constitutive 
model uses the complex stiffness, where the loss factor is 
equal to the imaginary part divided by the real part. The 



assumption is that the damping force is proportional to the 
displacement rather than the rate, which implies that it is 
independent of frequency. This is not entirely true 
because both the loss factor and shear modulus of a real 
VEM are frequency dependent, but the changes are small 
over the damping dominated region of a particular mode. 

-a 

.z 0.8 c 

E 0.6 
2 

0.4 

The simple spring system depicted in Figure 3 below 
represents the structural connection between sections A 
and B shown in Figure 2b. 
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(structure) 

f sin( at) - 
kl k ,  

(damper) 

figure 3: Spring model of bipod flexure leg with 
constrained-layer damping treatment. 

The main flexure blade, having stiffness k,, and the 
constrained-layer dampers act in parallel since they 
experience the same displacement. The constrained-layer 
damper is conveniently represented with two spring 
elements in series since both elements experience the 
same load; the VEM acting in shear having a stiffness of 
k,, and the extension or compression of the constraining 
layers and webs lumped together having a stiffness of kl. 
Since the constraining-layers and webs are much stiffer 
than the visco-elastic layer, shear deformation occurs 
across the visco-elastic layer when cyclical loads are 
transmitted. This shearing effect dissipates energy and 
reduces the vibration amplitude. 

The equivalent stiffness of the spring model shown in 
Figure 3 is described mathematically as follows: 

4 .kv 
4 +k 

keg = k, +- 

Using the concept of complex stiffness, the following 
relationship is defined: 

where a is a non-dimensional parameter that indicates the 
relative visco-elastic stiffness and q is the loss factor of 
the VEM. 

By way of substitution, the equivalent stiffness described 
in equation (1) can be rewritten as: 

1 + a(1 + iq) keq = k, + k, (3) 

Equation (3) indicates the nature of the optimization that 
must take place in determining the appropriate value of 
the visco-elastic stiffness (k,) given a limiting constraining- 
layer stiffness ( k l ) .  It shows that the damping in the 
system approaches zero as ci approaches either zero or 
infinity. With these limits, the equivalent stiffness would be 
written as follows: 

The first step in the development of the optimal damper 
design requires separating k,, into real and imaginary 
parts as shown in equation (5) below: 

where r is the ratio of the constraining-layer stiffness to the 
structural stiffness, ( r  = k , / k , ) .  The relationship for each 
part is shown plotted in Figure 4 as a function of a for q=l 
and r =  1. 

As expected, the real part of the stiffness increases with a 
from k, to k, + kl and the imaginary part, which represents 
the damping, has a maximum that coincides with the real 
part being midway between k, and k, + kl.  It can be seen 
from equation (5) that the imaginary stiffness increases 
with r and q, however the practical limits for both are 
approximately 1. A stiffness ratio (r)  greater than one is 
usually difficult to obtain due to other constraints and the 
mode shape is likely to change in a way to lessen the 
benefit of a larger ratio. The usual design strategy is to 
make r as large as practical and to select a high-loss 
visco-elastic material with the appropriate shear modulus 
and thickness to maximize some indicator of the damping. 



The maximum imaginary stiffness occurs when the 
derivative with respect to ct is zero, giving rise to equation 
(6) for ctOpt. The optimum equivalent stiffness, shown in 
eqution (7), results from substituting aopt into equation (5). 

The difficulty in applying this model to a real system lies 
first in determining r for the particular application and then 
determining the visco-elastic stiffness to achieve This 
is not too difficult for a damped beam structure by 
assuming a deflection shape and integrating the strain 
energies that correspond to k,, kl  and k,. More 
complicated structures generally require a finite element 
approach such as a modal strain energy method. 
However, the equations developed from the spring model 
are useful to augment and check the modal strain energy 
approach. 

MODAL TESTING OF BIPOD SUPPORT FLEXURES 
WITHOUT DAMPING TREATMENT ADDED 

The structure that houses the projection optics is referred 
to as the projection optics box (POB). The POB is 
supported by the bipod flexures, which kinematically 
interface to a structure, referred to as the engineering test 
stand (ETS), through the ball and cone joints. The ETS is 
an alpha-class tool designed to demonstrate full-field EUV 
imaging and provide data to equipment manufacturers to 
support production-tool development. 

Experimental modal tests were conducted on the 
supported POB, prior to applying the damping treatment, 
to determine the corresponding modes of vibration. The 
tests focused on the rigid body motions of the POB on the 
bipod flexures, as opposed to the flexural modes of the 
POB itself. These modes were either rocking or lateral 
motions of the POB, either front to back or side to side. 

Ideally the experimental modal testing of the POB would 
be performed in the end use configuration; that is, with the 
POB supported on the bipod flexures and kinematically 
mounted to the ETS. However, this was not possible 
because the testing occurred prior to the construction of 
the ETS. Therefore, a mass-equivalent steel plate was 
used to represent the ETS for testing purposes. The plate 
was approximately 52 inches square, 3 inches thick, and 
weighed approximately 2100 Ibs (9341 N). This provided 
a high stiffness comparable to what would be expected on 
the isolation frame of the ETS where the POB would 
mount. An opening was cut in the center of the plate that 
would allow the POB to be supported by the three bipod 
flexures. Three stainless steel balls, VI of an inch in 
diameter, were epoxied into countersunk holes on the top 
surface of the plate at the locations where the POB 
support flexures would interface with the ETS. 

To best approximate free boundary conditions for the 
modal tests, and thus avoid altering the dynamics of the 
system, the plate was suspended from an overhead crane 
using elastic bungee cords. Frequency response 
functions (FRF) of the system were obtained by exciting 
the plate and measuring the response output at 54 
different locations on the POB structure, flexures, and 
plate with a sensitive tri-axial accelerometer (1 V/G). 
Initially the plate was excited using a large force hammer 
as shown in Figure 5 below; however, it was later changed 
to a small electromagnetic shaker with the stinger 
positioned normal to the plate surface. The shaker 
provided well-controlled excitation levels, more 
comparable to what might be expected on the actual 
system. The shaker was setup to transmit a random 
broadband force with a bandwidth of 500 Hz to the plate. 
The input force from the shaker to the plate was measured 
with a load cell (100 mV/lbf). Figure 6 shows a sample 
frequency response measurement obtained from testing a 
particular point on the POB. 

Figure 2 Experimental modal testing of the POB mounted 
to an ETS mass-equivalent steel plate. 

Figure 6: FRF of sample point on POB structure. 



Once frequency response functions (FRFs) were 
obtained, they were analyzed and curve-fitted using a 
commercially available modal analysis software package. 
Curve fitting helped to identify frequency and damping 
parameters as well as mode shape information extracted 
from model animations. The animations of the individual 
mode shapes helped distinguish plate modes from rigid 
body rocking modes of the POB on its support flexures. 
The plate modes are not of interest since they will not be 
in the real system. A total of three plate modes were 
identified; one torsional mode and two bending modes. 
Ideally these plate modes would occur at frequencies 
either much higher or lower than the POB modes, thus 
minimizing the effort in analyzing the modes of interest. 
Unfortunately, they occurred in the same range of 
frequencies as the POB modes, which complicated the 
analysis. Table 1 below shows the extracted modal 
parameters of frequency and damping for the system up to 
300 Hz. The table also indicates whether the modes are 
plate modes or modes associated with the POB on the 
support flexures. Figure 7 shows an overlay magnitude 
plot of all the measured frequency response functions with 
pointers denoting which modes are plate modes and 
which are POB modes. 

Mode 

1 
2 

Freq. Damping Damping Type of 
(Hz) (% critical) factor (Hz) mode 
121.3 1.15 1.395 POB mode 
125.6 0.12 0.151 plate mode 

3 129.3 0.32 0.41 4 
4 143.1 0.34 0.487 
5 151.1 0.94 1.420 
6 161.4 1.01 1.630 
7 173.8 0.20 0.357 
8 186.1 0.13 0.242 

There is very little damping associated with the rigid body 
motions of the POB, as is evidenced by the extracted 
damping values in TableI. All modes have approximately 
1% or less of critical damping. This is quite undesirable 
and effectively means that vibration occurring in the 
isolation frame of the ETS near the resonant modal peaks, 
will be transmitted to the POB and amplified by a factor of 
50 or more. The constrained-layer damping treatment will 
significantly reduce this amplification. 

POB mode 
POB mode 
POB mode 
POB mode 
plate mode 
plate mode 

FINITE ELEMENT MODELING OF TEST SETUP 

As part of the dynamic study for the supported POB, a 
detailed finite element model was created and analyzed. 
This model is shown in Figure 8 below. 

Figure 7: Overlay magnitude plot of measured FRF's 
without damping treatment added. 

Figure 8: Finite element model of POB structure mounted 
to ETS mass equivalent plate using bipod flexures. 

Modeling the system was fairly straight forward with 
exception to the ball and cone joints, which were modeled 
using spring elements. The radial and axial stiffness of 
these joints were calculated using Hertzian-contact theory. 
These values were then fine tuned so that the analytical 
modal results matched closely with the experimental 
results both in frequency and mode shape. Comparison of 
the analytical and experimental results showed very good 
agreement for all modes, except for the 5th POB mode 
(161.4 Hz) which was not predicted by finite element 
modeling (see Table 2 ). The model animations from the 
experimental data suggest that the motion of this mode 
could be dependent on the friction in the ball and cone 
joint interface, which was not modeled. Fortunately this 
mode is not expected to impact the motion of the 
projection optics compared to the first three POB modes. 
The first three POB modes are primarily excited by vertical 
disturbances, while the fourth and fifth modes are primarily 



excited in the lateral direction. On the ETS, virtually all 
excitation will come as a result of ground input 
disturbances with the vertical component at least one to 
two orders of magnitude larger than the lateral 
components. 

Table 2: Comparison between analytical results using a 
finite element model and experimental results. 

FINITE ELEMENT MODELING OF BIPOD FLEXURES 
TO DETERMINE OPTIMUM VISCO-ELASTIC STIFFNESS 

In order to determine the optimum visco-elastic stiffness 
and design the optimal damping in the support flexures, a 
finite element model of one of the support legs was 
created. This model incorporated a thin visco-elasitic 
layer and a constraining layer on both sides of the bipod 
flexure leg. The leg was constrained at one end and 
axially loaded on the other end. The visco-elastic material 
was modeled having a thickness of 0.010 in. (0.254 mm) 
and a surface area of 1.24 in.’(800 mm‘) per side. The 
webs and constraining-layers were modeled with a 
thickness of 0.040 in. (1.016 mrn). figure 9 shows the 
model of the support flexure leg used in the finite element 
analyses. 

Figure 9: Finite element model of support flexure leg. 

A finite element method was chosen because of the 
difficulties associated with determining the correct value of 
oropt using conventional analytical methods. When using 
finite element methods, the design goal is to find the 
relevant properties of the visco-elastic layer, such as 

shear modulus, area, and thickness, that maximize the 
proportion of strain energy in the VEM. This is analogous 
to finding cbpt as described in equation (6) for the simple 
spring model. 

The optimal visco-elastic stiffness, k,, was determined by 
performing a series of analyses on the model in which the 
visco-elastic stiffness was varied over some range. After 
each analysis the strain energy in the visco-elastic 
elements was summed and the total strain energy of the 
model was calculated. The ratio of these two strain 
energy values was then compared for each analysis. It 
was easy to vary the visco-elastic stiffness by varying the 
modulus of elasticity of the visco-elastic elements. The 
relationship between modulus of elasticity and visco- 
elastic stiffness is shown in the following equations: 

E . A  (8) .. k,=- k =- and G=- . 
t 2 ,  (1 + v) 2r. (I  + v) 

E 

where G is the shear modulus of the material, A is the 
surface area covered by the material, t is the thickness of 
the material, and v is Poisson’s ratio. By varying the 
modulus of elasticity ( E )  no modifications to the model’s 
dimensions were necessary. Once all the analyses had 
been performed the strain energy ratio of u,,,,,~~~~ 1 utOta, 
was plotted against visco-elastic stiffness, as calculated by 
eqution (8). Figure 10 shows this plot, from which the 
optimal visco-elastic stiffness, kvlopt = 830,000 Ibf/in 
(145,355 N/mm) can be identified. The shape of the plot is 
similar to the imaginary part of the equivalent stiffness 
shown in Figure 4, as expected. At this stiffness 
approximately 13% of the strain energy associated with 
the axial load is absorbed by the visco-elastic elements. 
This may seem small, but as shown later will have a 
significant affect on reducing vibrational amplitudes at 

1 OB 10’ 
visco-elastic stiffness (k, ) 

Figure 70: Plot of strain energy ratio vs. visco-elastic 
stiffnes computed from finite element analyses. 

Once the optimal visco-elastic stiff ness had been identified 
using the finite element method, it was used to determine 
the actual parameters to be used on the POB support 



flexures. Because the ETS has strict out-gassing 
requirements, there was only one choice of visco-elastic 
material available for use. The material came in sheet 
form with a specified thickness of 0.001, 0.002, or 0.004 
inches. The shear modulus and loss factor of the material 
are both temperature and frequency dependent and the 
values for each were obtained using a specified 
nomograph provided by the manufacturer of the visco- 
elastic material. 

It was desirable to dampen at least the first two modes of 
vibration of the POB, which occur at frequencies of 121.3 
Hz and 129.3 Hz. The shear modulus of the selected 
visco-elastic material at an operating temperature of 20 9C 
for these frequency values was approximately 1,160 psi 
(8 Mpa). For convenience in applying the visco-elastic 
material to the flexure webs, a material thickness of 0.004 
inches (0.1016 mm) was chosen. With two of the three 
variables that make up the visco-elastic stiffness already 
determined, the last was easily solved for in the following 
manner: 

k, =- G . A  3 k,l =830,OOOIbf /in = (1160psi)'A :. A =2.9in2 (9) 
9' 0.004in. 

It was determined that a total surface area of 
approximately 2.9 id (1,840 m f l ,  or approximately 1.45 
in' (920 m f l  for each side, was required to optimally 
damp out frequencies in the range of 120-130 Hz. The 
constraining-layers and visco-elastic material were 
designed and fabricated to accommodate this desired 
surface area. 

MODAL TESTING OF BIPOD SUPPORT FLEXURES 
WITH DAMPING TREATMENT ADDED 

In order to determine the effectiveness of the optimized 
constrained-layer dampers, a series of experimental 
modal tests were performed on the POB system. The 
exact same testing procedure was followed as originally 
used to determine the modal parameters listed in Table 7 
so that valid comparisons could be made before and after 
the dampers were added. Upon collecting all the 
frequency response data, it was plotted and analyzed with 
the modal software package as previously described. 
Figure 7 7 shows an overlay of magnitude plots for all the 
frequency response functions collected. 

It is obvious from the plotted data in Figure 7 7  that the 
dampers have virtually eliminated the POB modal peaks. 
The three prominent modes shown in Figure 11 were 
identified as being the same plate modes as reported in 
Table 7. The second and third plate modes have had a 
measurable increase in damping that results because 
these modes are bending modes that cause a piston 
motion of the POB structure. This piston motion exercises 
the dampers and reduces the vibration amplitude. The 
first plate mode is torsional and does not couple well to the 
POB structure through the three-point mount. Therefore 
the torsional mode does not exercise the dampers and 
consequently there is no increase in damping. A 
comparison of measured damping values for the plate 
modes is shown in Table 3. 

cI- plate modes ." " 

Figure 7 7 :  Overlay magnitude plot of measured FRF's 
with damping treatment added. 

Table 3: Comparison of extracted damping parameters for 
the plate modes, with and without dampers added. 

125.6 
173.8 0.20 175.6 1.10 
186.1 0.1 3 190.1 1 .oo 

Extracting modal parameters from the POB modes was 
more difficult since all of the modal peaks had virtually 
disappeared from the data. The problem in identifying 
modal parameters for the first two POB modes was that 
the torsional plate mode was so dominant by comparison 
that the damped POB modal peaks were hidden in most of 
the collected FRF's. The other three modes, although less 
influenced by the plate modes, had dropped in magnitude 
to such a degree that the noise floor of the sensor 
influenced much of the data. The only FRF's used in the 
parameter estimation were those where the response of 
the plate modes was minimum and the response of the 
POB modes were fairly significant. A comparison of the 
extracted modal parameters, with and without constrained- 
layer damping added, is shown in Table 4 below. Included 
in the table is the quality factor (Q.F), which is a measure 
of vibration amplitude at resonance. 

Table 4: Comparison of extracted damping parameters for 
the POB modes, with and without dampers added. 



CONCLUSIONS 

The projection optics system for extreme ultraviolet 
lithography (EUVL) requires precise and repeatable 
alignment of the reflective optics within the structural 
housing, referred to as the projection optics box (POB). It 
is critical that the PO6 is isolated from variable quasi-static 
loads that could change the optical alignment. Such loads 
could arise from being mounted in an over-constrained 
manner. To minimize influence to its natural shape, the 
POB is exactly constrained using a unique kinematic 
coupling. It consists of three ball-cone joints to provide a 
repeatable connect-disconnect interface between the PO6 
and the mounting frame (Le. the engineering test stand 
(ETS)). Each joint allows three rotational degrees of 
freedom about the ball center, while a pair of blade 
flexures at the other end (one in each leg) provides an 
additional hinge axis that in combination with the ball-cone 
joint releases one translational constraint. Therefore, each 
joint constrains exactly two degrees of freedom and three 
such joints, properly placed, exactly constrain the six rigid- 
body degrees of freedom of the POB. 

Dynamic motion of the POB is also a concern because it 
causes the image to move with respect to the wafer. 
Experimental modal tests were performed to determine 
the resonant modal frequencies of a nearly rigid POB 
moving on its supports. The measured damping was quite 
low, which means that vibration occurring on the mounting 
frame near resonant modal peaks will be transmitted to 
the POB and significantly amplified. As a means of 
reducing amplification at resonance, constrained-layer 
dampers were added to the support flexures. These 
dampers were designed to reduce the resonant peaks of 
the first three POB modes, with emphasis on the second 
mode. Experimental tests confirmed the effectiveness of 
the dampers. The quality factor (e), which measures the 
amplification at resonance, dropped from 33.3 to 5.9 for 
the first mode, from 156.3 to 7.1 for the second mode, and 
from 147.1 to 18.5 for the third mode. These dampers will 
help ensure that the assembled POB meets the stringent 
vibration requirements necessary to produce high quality 
optical images. 
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